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Part A

Answer all the questions. 
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1. Define set of all real numbers as follows. Let An = ( -1/n, 1] if n is odd and 

An = ( -1, 1/n] if n is even. Find lim sup An and lim inf An.

2. Explain Lebesgue-Stieltjes measure with an example.

3. Define counting measure with an example.

4. State Borel- Cantelli Lemma.

5. If h is B- measurable function, show that | h | is also B-measurable 

function.

6. What is induced probability space?

7. If random variable X takes only positive integral values, show that            
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8. Define convergence in r-th mean.

9. If Xn 
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 X and g is continuous, show that g(Xn) 
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10. State Levy’s theorem.

Part B

Answer any five questions. 
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11. If { Ai , i ( 1) is a sequence of subsets of a set (, show that 
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12. Show that countable additivity of a set function with ((() = 0 implies finite additivity of a set function.

13. Prove that every finite measure is a ( - finite measure. Is the converse true? Justify.

14. Let f be B-measurable and if f = 0 a.e. [(],  show that 
[image: image7.wmf]ò
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f d( = 0.

15. State and establish  additivity theorem of integral.

16. State and establish Minkowski’s inequality.

17. Show that Xn 
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 X. Is the converse true? Justify.

18. If Xn
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X, show that (Xn2 + Xn) 
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(X2 + X).

Part C

Answer any two questions. 
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19. a). State and establish extended monotone convergence theorem.

b). State and establish basic integration theorem.


          ( 12 + 8)

20. a). Let ( (A) = 
[image: image12.wmf]ò
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d(;  A in the ( - field (, where 
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fd( exists; thus ( is a signed measure on (. Show that (+(A) = 
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f - d( and |(|(A) = 
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b). State and establish Jordan – Hohn decomposition theorem.
           (8 + 12)

21. a). If 
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b). Let X be a random variable defined on the space ((, A, p) and E |X|k < (, k>0, Show that nk P[|X|>n] ( 0 as n ( (.


                     (10 + 10)

22. a). Show that Xn 
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 X. Is the converse true? Justify. 
b). State and establish Lindberg Central limit theorem.

         (10 + 10)
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